BioArchive® System

The BioArchive® System is the only fully robotic storage and retrieval system for cryopreserving high value cell samples.

Request a Quote

Overview

Insurance Today, For a Viable Future.

By using a proven, computer-controlled technology and tracking software, the BioArchive provides the best protection for today’s high value cell samples that meet tomorrow’s stem cell therapy needs.

  • Samples are stored at a consistent -196°C temperature
  • Constant temperature control through closed-system sample handling with robotic storage and retrieval
  • Integrated control rate freezing
  • Delivers up to 94% post-thaw cell viability1*
  • Individual storage and retrieval of cell samples results in minimal exposure to transient warming events (TWE)
  • Automated tracking of individual sample freeze curves and storage in LN2 assures maximum confidence

 

Superior Design. Unsurpassed Viability.

  • Viable CD34+ stem cell recovery is consistently > 97%, higher than other available systems1
  • Fully automated, closed system maintains cell integrity
  • Precise robotic storage and retrieval minimizes TWE
  • Over 3600 sample capacity

 

Complete System Solution

The BioArchive® System consists of the following key components:

  • Liquid nitrogen dewar with storage rack
  • Liquid nitrogen control system for the dewar
  • Controlled rate freezer (CRF) modules
  • Sample retrieval cartridge
  • Robotic arm consisting of a barcode reader and a periscope with a canister hook necessary for storage and retrieval
  • Microprocessor control system which controls the automated functions and maintains records of the samples freeze profile and system inventory
  • Sample Management Software (SMS)
  • Computer and accessories (printer, barcode label scanner, barcode label printer, mouse, keyboard, laptop)
  • One magnetic retrieval device

 

Controlled Freezing. Confident Results. 

  • Controlled-rate freezing process, a sensor monitors the sample temperature
  • This individual controlled-rate freezing maintains the sample’s cell integrity during the freeze cycle
  • The CRF controls the rate of freezing based on temperature and time until the sample reaches -50°C
  • Once the sample reaches -50°C it is then moved from the CRF and is placed in an unique location for storage. It can then be independently retrieved without compromising other samples cell viability
  • Three-dimensional, 25mL, dual-compartment blow-molded freezing bag and a stainless-steel canister ensures precise, uniform freezing
  • An overwrap bag adds further sample protection during storage in LN2

 

Tracking with Certainty. Storing with Confidence. 

  • Software provides accurate, individualized, fully documented freeze and sample tracking, history, and inventory
  • Robotic arm retrieves sample via integrated barcode reader
  • Data acquisition storage information is accessed via the sample’s unique barcode
  • Software helps comply with cGMP and cGTP Requirements

 

Safety for Samples. Safe for the Operator. 

  • Multiple safety controls protect cell preservation and operator
  • Magnetic stainless-steel canisters firmly house overwrapped freezing bags, enabling precise robotic insertion, and retrieval from liquid nitrogen
  • Vacuum-insulated Dewar helps maintain constant temperatures and a safe environment
  • Robotic arm identifies and retrieves only the desired sample, protecting all other samples from TWE
  • Robotic functions and minimal dewar access points reduce operator exposure to liquid nitrogen
  • Insulated retrieval cartridge helps protect handler from exposure to liquid nitrogen and samples to TWE
  • Uninterrupted power supply
  • Liquid nitrogen volume control alert system
  • Series of audible alarms and screen alerts notify users of situations that need to be attended to.

References

  1. Rubenstein P. Cord blood banking for clinical transplantation. Bone Marrow Transplantation 2009;44:635-642.
* When used in conjunction with the AXP® System.

Working with the BioArchive® System

Preparing a Sample for Cryopreservation and Storage

  1. Place a labeled overwrapped freezing bag sample into a labelled canister.
  2. The canister is placed into a controlled-rate freezer (CRF).
  3. CRF is placed into a port on the BioArchive and the freeze cycle begins.

 

Robotic Controlled Sample Storage

 

Liquid Nitrogen Dewar

The liquid nitrogen dewar is a double-walled stainless-steel reservoir that holds liquid nitrogen for freezing samples. A vacuum is maintained between the walls, which effectively insulates the storage dewar. Liquid nitrogen level sensors are located within the dewar to allow monitoring of the liquid nitrogen level.

The dewar’s storage racks have approximately 3,600 individual storage positions “addresses” for 25 mL samples. The addresses are arranged concentrically so that every storage location can be accessed by the periscope assembly.

Two small ports on the dewar lid provides access to the inside of the dewar. These ports are used for insertion of the Control Rate Freezers and Retrieval Cartridges and are covered when not in use. Minimizing the size of the opening reduces LN2 evaporation, provides an added safety measure for the user and ice formation.

 

Liquid Nitrogen Dewar Control System

The control system operates a liquid nitrogen supply valve and an alarm system. This system allows the BioArchive to be set in an auto fill mode so when the liquid nitrogen level sensors detects the liquid nitrogen level below a preset level it signals the control system to open the liquid nitrogen supply valve. The control system also contains audible alarms and will alert the user if the dewar LN2 volume is at high, low, extra low levels.

 

Controlled-Rate Freezer

A controlled-rate freezer module (CRF) is used to hold the sample during the freeze cycle. It also monitors the freeze cycle and facilitates the execution of a freeze profile. The CRF is inserted into a port on the BioArchive System allowing the canister to be suspended in the liquid nitrogen vapor once in the port. A small electric fan, mounted at the rear of the CRF doors, is activated forcing nitrogen vapor through the interior of the chamber, and controls the flow of LN2 vapor over the sample. Two sensor probes, also found on one of the CRF doors, monitor the temperature of the sample and sends a signal to the fan to adjust its speed. This precise monitoring allows for superior accuracy in the control rate freezing process which is vital to maintain cell viability.

 

The Freezing Procedure Follows a Predefined Profile

 A freeze profile consists of three regions:

  1. Pre-freeze region 
    This is the region where the temperature of the sample begins above the freezing point of the cryoprotected sample solution and is brought down to a temperature just before ice forms in the extracellular sample.
  2. Freeze region 
    In this region water, removed from the cells turns to ice and the unfrozen fraction becomes increasingly concentrated as the freezing progresses. There is typically an increase in temperature immediately after the sample changes from liquid to cryptolline nucleation. This localized rise in temperature is known as the latent heat of fusion controlling nucleation and the temperature compensation provided by the CRF fans during the control rate preservation results in improved post-freeze cell viability1.
  3. Post-freeze region 
    This region is where the temperature of the sample is below the freezing point and is brought down to a defined temperature at a constant rate. After the temperature of the sample reaches the user-defined target the robotic arm transfers the frozen sample to its permanent storage address in liquid nitrogen. The frozen sample remains at this address until it is retrieved.

 

Retrieval Cartridge

The retrieval cartridge is used for retrieving frozen samples. It holds a foam canister sleeve designed to slow the warming of a removed canister.

 

 

 

Periscope Assembly

The periscope assembly is an electromechanical system that transports a canister containing a sample from the controlled rate freezer (CRF) module to a specific storage address in the dewar. It also retrieves the frozen sample from its storage address when it is needed.

A camera and mirror mounted in the periscope allows for the reading of the barcode label of the canister when the canister is on or near the periscope hook.

 

White Papers, Abstracts & Presentations

Brochures
Posters
Published Literature
      • Arrojo IP, Hernández-Lamas M, Verdugo LP, et al. Trends in cord blood banking. Blood Transfus. 2012;10(1): 95–100.
      • Chevaleyre J, Rodriguez L, Duchez P, et al. A novel procedure to improve functional preservation of hematopoietic stem and progenitor cells in cord blood stored at +4°c before cryopreservation. Stem Cells Dev. 2014;23(15):1820-30.
      • Prata K.L, Santis GC, Orellana MD, et al. Cryopreservation of umbilical cord mesenchymal cells in xenofree conditions. Cytotherapy. 2012;14(6):694-700.
How may we help?